Multi-measure Similarity Searching for Time Series

نویسندگان

  • Jimin Wang
  • Yuelong Zhu
  • Dingsheng Wan
  • Pengcheng Zhang
  • Jun Feng
چکیده

In this paper, we evaluate some techniques for the time series similarity searching. Many distance measures have been proposed as alternatives to the Euclidean distance in the similarity searching. To verify the assumption that the combination of various similarity measures may produce more accurate similarity searching results, we propose an multi-measure algorithm to combine several measures based on weighted BORDA voting method. The proposed method is validated by the analysis results of the flood data obtained from Wangjiaba in the Huaihe basin of China.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Empirical Comparison of Distance Measures for Multivariate Time Series Clustering

Multivariate time series (MTS) data are ubiquitous in science and daily life, and how to measure their similarity is a core part of MTS analyzing process. Many of the research efforts in this context have focused on proposing novel similarity measures for the underlying data. However, with the countless techniques to estimate similarity between MTS, this field suffers from a lack of comparative...

متن کامل

Multivariate Time Series Similarity Searching

Multivariate time series (MTS) datasets are very common in various financial, multimedia, and hydrological fields. In this paper, a dimension-combination method is proposed to search similar sequences for MTS. Firstly, the similarity of single-dimension series is calculated; then the overall similarity of the MTS is obtained by synthesizing each of the single-dimension similarity based on weigh...

متن کامل

A Hybrid Time Series Clustering Method Based on Fuzzy C-Means Algorithm: An Agreement Based Clustering Approach

In recent years, the advancement of information gathering technologies such as GPS and GSM networks have led to huge complex datasets such as time series and trajectories. As a result it is essential to use appropriate methods to analyze the produced large raw datasets. Extracting useful information from large data sets has always been one of the most important challenges in different sciences,...

متن کامل

SSH (Sketch, Shingle, & Hash) for Indexing Massive-Scale Time Series

Similarity search on time series is a frequent operation in large-scale data-driven applications. Sophisticated similarity measures are standard for time series matching, as they are usually misaligned. Dynamic Time Warping or DTW is the most widely used similarity measure for time series because it combines alignment and matching at the same time. However, the alignment makes DTW slow. To spee...

متن کامل

Efficient LCSS Distance Measure for Searching of Similar Time Series Trajectories

Many researchers have been attracted towards searching of similar moving objects trajectories due to its wide range of real time applications. Searching of similar trajectories of moving objects helps data mining users to take smart decisions and thereby improving the performance of systems. Trajectories are compared for similarity using edit distance measures such as DTW, ERP, EDR, and LCSS. T...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • JCP

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014